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This article deals with the design procedure of phase locked loops in which the analog
loop filter is replaced by a digital computer. Specific design curves are given for the step
and ramp input changes in phase. It is shown that the designed digital filter depends
explicitly on the product of the sampling time and the noise bandwidth of the phase
locked loop. The technique of optimization developed in this article can be applied to the
design of digital-analog loops for other applications.

l. Introduction

This article deals with the design of phase locked loops in
which the analog loop filter is replaced by a digital computer.
The optimum analog phase locked loop design, based on the
Wiener filtering theory, has been analyzed by various re-
searchers (Ref. 1). The effort described in this article is a
procedure of digitizing the analog loop filters by properly
designed digital filters. An applicable example is the tracking
loop in the Multimegabit Telemetry System. Various tech-
niques have been developed to replace the analog loop filters
by their discrete counterparts (Ref.2). However, Gupta
(Ref. 3) pointed out that the optimum hybrid loop is not the
discrete version of the analog loop. In this article, an optimum
digital filter is designed to replace the conventional analog
loop filter by putting an inequality constraint on the noise
bandwidth of the phase locked loop. The Kuhn-Tucker theo-
rem, together with the calculus of variation, is used to find
the optimum structure of the digital filter. Both the interior
optimum as well as the boundary optimum are evaluated.
Based on the Kuhn-Tucker theorem, the interior optimum is
computed as an unconstrained optimum while the boundary
optimum is obtained via the Lagrange multiplier technique
(Ref. 4).

Il. The Mathematical Model

The mathematical model of the analog-digital phase locked
loop is shown in Fig. 1, The digital filter, D(z), together with
the sample and hold circuit replaces the conventional analog
loop filter. A VCO is modelled by a pure integrator, and the
output of the VCO is fed back to produce an error signal. The
input 0(¢) is assumed to be deterministic and is corrupted by
an additive white noise n,/(f) which has a one-sided power
spectral density of N, w/Hz. Let e(nT) be the sampled error
between the actual input phase 8(¢) and the output phase of
the VCO y(¢) in the absence of noise. Then the sum squared
sample error o is defined as

o

o2 = D e2mD) = Q) [0@D- veD* ()

n=0 n=0

where T is the sampling period.
We want to minimize the 02 subject to the constraint that

the average power of the output noise n,(¢) is kept below a
constant. Specifically, if B, is the required noise bandwidth of
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the phase locked loop, we want to solve the following
problem.

Problem: Minimize o: subject to
o2 = E[n2()] < N, (w/Hz) - B,,(Hz) 2

In the following sections, we first evaluate the quantities 02
and o in terms of the digital filter D(z). Then we apply the
Lagrange multiplier technique and the calculus of variation to
minimize o, subject first to the equality constraint and then
secondly to the strict inequality constraint. The resulting opti-
mum digital filter D(z) is then evaluated explicitly for the
cases where 6(¢) are step and ramp inputs.

lil. The Optimum Digital Filter

Let G(s) be the transfer function of the cascaded system
consisting of the zero order hold and the VCO. Then

-e™T K
s s

G(s) = €))

A. Evaluation of 0,2

Let £(z) be the z transform of the sampled error sequence
e(rnT). Then

(S
1}

o Z (nT) = E e(nT) [2” f; E(z)z"-ldz]

n=0

1
o fme

()

[f} e(nT)z”] gz

n=0

1 T 4
Er _£E(Z)E(Z 1)7 4)

where C is the counterclockwise closed contour in the region
of convergence of E(z) and encircling the origin of the z plane.

Let G(z) be the z transform of the sampled impulse
response of G(s), and 6(2), Y(z) be the z transform of the
sampled input sequence 9(rn7) and the output sequence Y(u7).
Then

E@) = [1- W(2)G@)] 6(z) )
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where

D(z)

W) = 1 +DE)G(z) ©

Substituting Eqs. (5) and (6) in (4), we obtain o?.

B. Evaluation of 0,2

The average power of the output noise 03 is given by

2 =
Un

1
E{nz(t)}=§-1——% f dm fcp @mZ ()
0 c’

where &, (z,m) is the modified pulse spectral density
(Ref. 6) of the output noise n(¢) and C' is the counterclock-
wise closed contour in the region of convergence of ®,, (7 m),
0< m <1, and encircling the origin of the z-plane. Then,

.from Appendix A (with extensions to the modified z

transforms),

21 1f -1 dz
0,” = 50 T dm Hz,m)H(E ", m)®, (2) ,
0 fo !
®

where H(z,m) is the modified z transform of the system
transfer function between the input n,(#) and the output n,(2),
and @, (z) is the pulse spectral density of the input noise nt).

From Fig. 1,
H(z,m) = W(z) G(z,m) ®

where W(z) is given by Eq. (6) and G(z, m) is the modified z
transform of the impulse response of G(s).

For white noise input
<1>ni(z) =N

Hence

N
0,2 = 5 f—;A(z) We) W) (10)
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where

1
A(z) = f G(z, m) Gz Y, m)dm
0

C. Constrained Optimum Digital Filter

Now we want to find an optimum W(z), say W(z), that
minimizes (2) w1t§ the equality constraint so that the opti-
mum digital filter D(z) is given by

P L))

D@ = 7 Heiee (1)
Define
T [W()] =—— f [1 - WEGE)] [1- W 1)GE )] 6(z)

5(2—1)_

”‘['2'%7‘ f AW £ —BNTJ (12)
T

where A is the Lagrange multiplier and I' is the counterclock-
wise closed contour in the region of convergence of both E(z)
and @, (z,m) and encircling the origin in the z plane. Since
contour integration is independent of path within the region
of convergence, the contour I' is taken as the unit circle which
is the same as C or C'.

Using the calculus of variation and evaluating

2R+ er@l| =0

€=0

we obtain

%}. g B.p@v?»(xl)— —Zl-c;(z)o(z)a(z—l)] V(z)dz

L

1
37 ; [—Z—.P(z) W(z)

- -;—G(z“l)e(z)e(z"l)] V(iz"V)dz=0

where

P(z) = G(z)GE"H(2)0(z 1) + A (2). 13)

Defining
P(z) = P*(2) P (2)

where P*(z) has all the poles and zeroes inside the unit circle
of the z plane and P7(z) has all the poles and zeroes qutside
the unit circle of the z plane, we obtain the optimum W(z) as

) = = I:G(Z"I)B(Z)G(z‘l)] 4

P2 2P (2)

where [+], represents that part of the partial fraction expan-
sion of [+] whose poles are inside or on the unit circle.

In (14) the optimum_ W(z) is a function of the Lagrange
multiplier A. By putting #(z) in (10), and using

2
an—NB

o "N?

we can determine A and hence the constrained optimum filter
D(z).

D. Unconstrained Optimum Digital Filter

Equation (14) defines the optimum filter W(z) for the
boundary minimum of (2). From the Kuhn-Tucker theorem,
the interior minimum can be evaluated by forcing the
Lagrange multiplier to zero in (12). In this case, the optimum
digital filter given by (11) will satisfy the strict inequality of
the constraint

2
a2 <N B,

From (14) and (10), we obtain the unconstrained optimum
digital filter, D(z). The crossover point between the interior
minimum and the boundary minimum is given by

BT, = 55 f AWM Z  (15)

r

where #(z) is the unconstrained optimum of (2).
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IV. Examples

In this section, the optimum digital filter D(z) is evaluated
for two types of inputs: the step and ramp change in phase
inputs. Poles and zeroes of the optimum digital filter are
described by the design curves for various time-bandwidth
products.

Example 1. Step input

For step inputs,

1 ¢t=20
6(r) =
0 <0

Then

z -

0(z) = i 0Tz ™" =
n=0

From the z transform table of Ref. 5, we obtain from (3)

G(z) =

z—l

and

Gz, m) —-[gz—7—1(m+z_1 1)

(i) Constrained optimum filter

From (13),

?\KzT2 -(z2+272)- 2z +z7 1) +6 +6/A
G- 1PE - 17

P(z) =

=P*(z) P (2)

where

MN2T? az? +bzte

P(2) =
6 @-1?
208 2 -1
P () = 7\K6T az _+bz +c
@ -1y
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and a, b, ¢ satisfy the following equations

ac = -1
ab+be = -2 (16)
a? +b% +c? = 6+6/\
Then from (14)
o~ +hb+te z2(z-1)
W) =2
KT az’ +bz te
and from (12)
A~ o _atbte _z _ & 2
D) = KT az-c KT z+P,

The constrained optimum digital filter for the step phase input
is a single pole, single zero filter with pole located at cla.
Putting in the constraint that

WT =57 f ARNNEE

unit
circle

we arrive

(Qa+2c-b)atb+tc)
3@-c)@tc-b) an

B,T =

Therefore given any B, T, we can determine the variables ¢, b,
¢ and A from (16) and (17) and hence the optimum filter D).
Since B, T >0, and |c/a] <1 for a causal digital filter, only a
range of values for a, b, and ¢ can satisfy (17).

(ii) Unconstrained optimum filter

From (13)

1
- 12 -1

P(z) = K*T? = P*(2)P(2)

where

P*(z) = KT
(z- 1)2




! - 1)?
Then
We) = gt
\ B = ==
and from (15),

B, 1), =—2—;7 £ A(z)W(z)W(z”‘l)iZ- =%

Figures 2 and 3 plot the gain coefficient g; and the pole
location of the optimum digital filter D(z) for the step phase
input. Note that D(z) becomes D(z) for By T > (ByT),-
Example 2. Ramp input
For ramp inputs,
t t=20
6() =

0 t<0

Then

Tz
-1y

0(z) =

(i) Constrained optimum filter

From (13),
Pe) = AK2T? (23 +273)- 9 (z+271)+ 16 +6T%/\
’ ARVICRER
= P*@)P(2)
where

P@) = f)\KsT az” + bz +cz+d
- 1)

P () = N2T? az 3 4bz24cezl 4+ d
6 (z—l - 1)3

and a, b, ¢, d satisfy the following equations,

ad = 1

ac+bd = 0
(18)

ab+bcted = -9

2 +b2+c?+d* = 16 +6T2\

Then
-
and
By =k et B TR g
KT G- D@ +d) KT G- DG p,)
where

e=2atb-d
f=-atctld
Unlike for the step change in phase, the optimum digital

filter for the ramp change in phase is a double pole, double
zero filter. Putting in the constraint that

By

_ 1 2+4/3 -1y 4z
T = 376 f;F(z)F(z )7

where
F(Z)=€Zz+[(2"\/§)e+flz"‘(2“\/§)f
" oad bt tez+d
Then
5 T_i(2€2+€f+2f2)Q0‘(62+4€f+f2)Q1 +ef Q,
N3 @-a?)Q,- @b cd)Q, +(ac- bd)Q,
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where
Q, = ala+c)- d(b +d)
Q, =ab-cd (20)
g, = b(p+d)-cla+tc)

As in example 1, for any given BT, the variables 2, b, ¢, d
and X are determined from (18) and (20). The optimum digital
filter D(z) is then given by (19).

(ii) Unconstrained optimum filter

From (13),
Pe) = —ET  _ priyp
- D" -1)°
where
Py = k1?2
(z- 1)

P(z) = KT> —2—

(@) 1)

Then

W(Z)—T 2z-1

(z- 1)
~ o 1 2z-1
D@ = %7 71

and from (15),

6,1, = 5 § a@iove £ -2
r

Figures 4, 5 and 6 plot the gain coefficient g,, the pole
location and the zero location of the optimum digital filter for
the ramp phase input. Again we see that D(z) goes to D(z)
when By T > (B T),.

V. Conclusion

An optimum design procedure to replace the conventional
analog loop filter in a phase locked loop by a digital computer
is given. Specific examples of step and ramp change in phase
have been described. In both cases, the filter gain coefficients,
pole locations, and zero locations are plotted for various
time-bandwidth products.
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Fig. 3. Location of pole vs B, T curve for loop with step change in
phase
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Appendix A

Evaluation of the Sampled Power Spectral

Density for the Output of Digital Filters

Let [x,]”, be the. stationary random sequence to the
input of a dlgltal filter having the impulse response [#,, |
The output [y,,] .. can be written as

oo

Z L.

k=—o0
Then
E[ynym] = Z E hn—k hm—-iE[xIéxl]
k=—co  l=—co
= Z Z hElx, X, ]
k=—o0 =—00
= Z Z hi_chlr(m—n) + (k1)
k=—oo  J=—oo
where

Ty = E[xn xn+k]

Therefore [y, ] ” . is also a stationary sequence with

Z hk 1 m+(k~l)

=0

E [ynyn+m E
f=—o00

Defining the sampled power spectral densities of sequences

[¥,] - and [xn]f’,m as

() ng ED,Ypml 2
and
®(2)=T f: E[xnxn+].] z77 foralln
P
we obtain
®,(2) = f: i hhTi Tt ()%

Je==-00 J=—o0 m=—oce

o0

= Z i b2 @ (2)

k=00 J=-—oc

HE)HE™) ®,(2)

where H(z) is the z transform of the impulse response([#,,]”,,

Hence
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